
ESTIMATING TOTAL HUMAN-CAUSED MORTALITY FROM REPORTED MORTALITY
USING DATA FROM RADIO-INSTRUMENTED GRIZZLY BEARS

STEVE CHERRY, Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA, email:
cherry@math.montana.edu

MARK A. HAROLDSON, U.S. Geological Survey Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team,
Forestry Sciences Lab, Montana State University, Bozeman, MT 59717, USA, email: mark_haroldson@usgs.gov

JAMES ROBISON-COX, Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA, email:
jimrc@math.montana.edu

CHARLES C. SCHWARTZ, U.S. Geological Survey Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study
Team, Forestry Sciences Lab, Montana State University, Bozeman, MT 59717, USA, email: chuck_schwartz@usgs.gov

Abstract:  Tracking mortality of the Yellowstone grizzly bear (Ursus arctos horribilis) is an essential issue of the recovery process.  Problem bears
removed by agencies are well documented.  Deaths of radiocollared bears are known or, in many cases, can be reliably inferred.  Additionally, the
public reports an unknown proportion of deaths of uncollared bears.  Estimating the number of non-agency human-caused mortalities is a necessary
element that must be factored into the total annual mortality.  Here, we describe a method of estimating the number of such deaths from records of
reported human-caused bear mortalities.  We used a hierarchical Bayesian model with a non-informative prior distribution for the number of deaths.
Estimates of reporting rates developed from deaths of radio-instrumented bears from 1983 to 2000 were used to develop beta prior probability
distributions that the public will report a death.  Twenty-seven known deaths of radio-instrumented bears occurred during this period with 16
reported.  Additionally, fates of 23 radio-instrumented bears were unknown and are considered possible unreported mortalities.  We describe 3 ways
of using this information to specify prior distributions on the probability a death will be reported by the public.  We estimated total deaths of non-
instrumented bears in running 3-year periods from 1993 to 2000.  Thirty-nine known deaths of non-instrumented bears were reported during this
period, ranging from 0 to 7/year.  Seven possible mortalities were recorded.  We applied the method to both sets of mortality data.  Results from this
method can be combined with agency removals and deaths of collared bears to produce defensible estimates of total mortality over relevant periods
and to incorporate uncertainty when evaluating mortality limits established for the Yellowstone grizzly bear population.  Assumptions and limita-
tions of this procedure are discussed.
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Management of grizzly bears requires monitoring the
number of deaths occurring annually.  Deaths are recorded
in a number of ways:  deaths of radio-instrumented indi-
viduals, deaths of animals as a result of management ac-
tions (i.e., removal of nuisance bears), and reports of deaths
by the general public.  However, not all bears that die are
reported and an estimate of unreported deaths can improve
and refine management.  Estimation of the number of
human-caused mortalities is particularly important.  We
describe and illustrate a Bayesian method of estimating
the total number of human-caused deaths.  The results
presented here are for illustrative purposes only.  Readers
should not interpret these results as our final analysis on
the estimation of total human-caused mortality in the
Yellowstone grizzly bear population.

STUDY AREA
Our study area (centered at latitude 44.64°N, 110.52°W)

contains approximately 37,500 km2 in the states of Wyo-
ming, Montana, and Idaho and encompasses Yellowstone
National Park and portions of 6 National Forests that sur-
round the park.  A primary component of the occupied
grizzly bear habitat within the area is designated as the
Yellowstone Grizzly Bear recovery zone (U.S. Fish and
Wildlife Service 1993).  During the last decade and a half,
grizzly bears in the Greater Yellowstone Ecosystem (GYE)
have expanded their range (Schwartz et al. 2002), and an

increasing number of mortalities are occurring outside of
the designated recovery zone.  We included all relevant
bear mortalities from the GYE in our analysis without
regard to their specific location.  Detailed descriptions of
the study area can be found in Knight and Eberhardt
(1985), Blanchard and Knight (1991), and Mattson et al.
(1991).

METHODS

Determination of Death
Data on grizzly bear mortalities were obtained from the

Montana Department of Fish, Wildlife and Parks, which
maintains the official database on grizzly bear mortalities
in the GYE.  We focused our analysis on 1983–2000, af-
ter the Interagency Grizzly Bear Committee (IGBC) was
formed.  The IGBC implemented regulations designed to
minimize human-caused grizzly bear mortalities (IGBC
1986).  Our analysis uses the number of publicly reported
or known human-caused grizzly bear deaths to estimate
the total number of human-caused mortalities.  We ex-
cluded (1) all natural bear deaths, (2) agency-sanctioned
management removals, (3) mortalities of radio-instru-
mented grizzly bears, and (4) known mortalities (i.e., car-
cass in hand) of bears whose cause of death was
undetermined.  There were 12 natural bear deaths (8 adults)
and 8 bears in the undetermined category during 1983–
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2000.
The degree of certainty associated with each record in

the mortality database is classified as:  (1) known, where
carcass was recovered or other evidence to indicate known
status was available; (2) probable, with strong evidence
to indicate a mortality had occurred but no carcass was
recovered; and (3) possible, with presumptive evidence
of a mortality but no prospects for validation (Craighead
et al. 1988).  We used known and probable human-caused
mortalities for analysis under one scenario and included
possible human-caused mortalities for a second analysis
that is more inclusive of all possible human-caused griz-
zly bear deaths.

Information used to estimate the percent of mortalities
that are reported by the public was obtained from Inter-
agency Grizzly Bear Study Team (IGBST) databases for
1983–2000.  The IGBST has been capturing, instrument-
ing, and monitoring grizzly bears within the GYE since
1975.  All grizzly bears except dependent offspring (cubs
or yearlings) captured during research trapping efforts
were radio-instrumented.  All grizzly bears involved in
nuisance activity within the GYE and captured by state
wildlife authorities (Wyoming, Idaho, Montana) were ra-
dio-instrumented (again with the exception of dependent
offspring) and data from these individuals were included
in IGBST databases.  Adult bears were usually instru-
mented with radiocollars (Telonics, Mesa, Arizona, USA)
that had breakaway canvas inserts.  Independent subadult
bears were instrumented with expandable collars
(Blanchard 1985) or glue-on-hair transmitters.  All
radiotransmitters had motion sensors that reduced pulse
rates if transmitters were stationary for a specified period
of time, usually 4–5 hours.  When pulse rates and loca-
tions from aerial telemetry indicated a stationary signal
over several flights (usually a minimum of 2 weeks), a
field crew investigated.

Stationary signals were usually cast-off transmitters.
When mortalities or collars found under suspicious cir-
cumstances were discovered, the appropriate law enforce-
ment agencies were notified to investigate the cause of
death.  Instances in which transmitters could not be re-
trieved and the individual was never recaptured were des-
ignated “unresolved losses”.  We believed there was a
strong probability that some unknown portion of these
instances were human-caused mortalities.  Transmitters
located in logjams in rivers or in cliffs may have been
purposefully discarded in these locations.

We classified radio-instrumented bears as “unexplained
losses” if premature failure of a working transmitter oc-
curred that was not logically attributed to the expected
battery life of the transmitter and the individual was never
recaptured.  Once again we know that some of these bears
were killed illegally and their collars destroyed.  Law en-

forcement cases have been prosecuted in which persons
had killed bears, destroyed collars, and confessed years
later.

For confirmed human-caused mortalities of bears that
were radio-instrumented at the time of loss, we determined
whether discovery of the mortality was due to the trans-
mitter.  These mortalities were classified as unreported,
discovery due to telemetry, if the public did not report
them.  We included individuals in this group whose
radiocollars had been cut off and separated from presum-
ably dead bears.  Forensic techniques were used to deter-
mine with a high degree of certainty whether suspected
cut collars had been cut.  Unexplained and unresolved
losses indicated by telemetry were also classified as unre-
ported, discovery due to telemetry.  Mortalities of instru-
mented bears that were discovered without the aid of
telemetry were considered reported (i.e., public finds or
discovered without telemetry).

Our classification of method of discovery for known
dead bears and unexplained and unresolved loss allowed
us to produce 2 estimates of the percent of human-caused
mortalities that are reported by the public.  The first uses
only the method of discovery for confirmed human-caused
mortalities.  The second is considered inclusive of all
known sources of possible human-caused mortality and
includes unexplained and unresolved loss of radio-instru-
mented bears.  These 2 classifications likely bound real-
ity.

The classification of mortalities and discovery criteria
we employed allowed us to produce estimates of unre-
ported human-caused grizzly bear mortality that include
or consider all possible sources of human-caused mortal-
ity (Table 1, Fig. 1).  We believe this is a reasonable ap-
proach given that we are dealing with a threatened species
characterized by low reproductive potential.

The Bayesian Method
Bayesian statistics is fundamentally different from the

frequentist statistics taught in most introductory statisti-
cal methods courses.  In a Bayesian analysis a prior (pre-
data) probability distribution is used to describe
uncertainty about an unknown parameter or parameters.
Data are collected and used to update or modify the prior
distribution to obtain the posterior (post-data) distribu-
tion for the unknown parameter.  To avoid subjectivity in
prior specification, some practitioners use “non-informa-
tive” priors, which often give results similar to the
frequentist approach.

The posterior distribution is the ultimate goal of all
Bayesian analyses.  It contains all relevant information
about the unknown parameter or parameters of interest.
Different numerical summaries of the posterior distribu-
tion may be of interest in different settings.  Common
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choices include the posterior median or the posterior mode.
Another frequently used summary is a 100(1 – α)% pos-
terior probability interval or credible interval.  The Baye-
sian interpretation is that the fixed interval has a 100(1 –
α)% probability of containing the random parameter.  One
common method of constructing credible intervals is to
choose the relevant percentiles.  For example, a 95% cred-
ible interval can be constructed by choosing the lower
endpoint to be the 2.5th and the upper endpoint to be the
97.5th percentile of the posterior distribution.  A more com-
plete summary of the posterior for a discrete parameter is
a graph of the cumulative posterior probability distribu-
tion (or a table of relevant percentiles when the posterior
is complex).  The numerical summaries can be obtained
by simulating data from the posterior distribution (Gelman
et al. 1995).

Ellison (1996) gives an accessible introduction to the
general topic of Bayesian statistics in ecology.  Dennis
(1996) discusses the negative aspects of Bayesian statis-
tics.  Hilborn and Mangel (1997) discuss the use of Baye-
sian statistics in ecology.  Lee (1997) and Box and Tiao
(1973) are introductory statistical textbooks on the topic
of Bayesian analysis.  More technical presentations can
be found in Gelman et al. (1995) and Carlin and Louis
(1996).  Further details of the Bayesian approach and an
example can be found in Appendix I.

Consider the following scenario: We are told a coin has
been tossed an unknown number of times (n) and we ob-
serve x heads.  We want to estimate the number of times
the coin was tossed.  We do not know the probability θ of
getting a head but we may be able to estimate it using a
different coin that we hope is similar to the one actually

Terms Definition
Cause of mortality Natural Death could be positively or reasonably attributed to natural causes.

Human-caused Death could be positively or reasonably attributed to humans.
Undetermined Cause of death could not be determined.

Certainty of mortality Known mortality A carcass or other evidence (i.e., parts) to substantiate death.
Probable mortality Strong evidence to indicate mortality but no carcass recovered.  Includes cases where blood, hair, or other

tissues clearly indicate severe wounding, and observations suggest the bear displayed abnormal behavior.
Possible mortality Some presumptive evidence of a mortality but no prospects for validation.  Includes defense of life

situations where shots were fired but no evidence of significant wounding was found and hearsay
evidence of poaching or malicious death.

Unresolved loss Pulse rate and stationary location of a transmitter indicated a cast-off collar or mortality, and transmitters could not
be retrieved due location (i.e., cliff, log-jam in river) or failure; bear never recaptured so fate was unresolved.

Unexplained loss Premature failure of a working transmitter occurred that could not logically be attributed to expected battery
life; bear never recaptured so loss was unexplained.

Discovery of mortality Reported Mortality of an instrumented or noninstrumented bear discovered without the aid of telemetry.
Unreported Mortality of an instrumented bear discovered due to telemetry and not reported by the public.  Unexplained

and unresolved losses of telemetered bears were classified as unreported under one scenario used to tally
deaths.
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Fig. 1.  Classification of grizzly bear mortalities in the Greater Yellowstone Ecosystem, 1983–2000.  Mortalities are classified
by type and by certainty of actual death.  Estimation of unreported, unmarked mortalities (shaded boxes) was the objective of
this study.

Table 1.  Definitions of terms related to cause, certainty, and discovery of grizzly bears mortalities.
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tossed.  In the practical setting of concern to us, n is the
number of non-agency, non-collared human-caused bear
deaths, x is the number of such deaths reported by the
public and θ is the probability that a death will be reported.

Clearly, this is a difficult problem.  It has a long history
in statistics (Raftery 1988 and references therein) and is
not readily solved by non-Bayesian methods.  Raftery
(1988) suggested a Bayesian approach for problems of
this type.  He started with a collection of success counts
from a binomial distribution with unknown parameters n
(the number of trials) and θ (the probability of a success
on any one trial).  A joint prior distribution is required for
n and θ.  Specification of prior distributions for a discrete
parameter is difficult (Gelman et al. 1995), but Raftery
(1988) rather cleverly solved the problem with a hierar-
chical Bayesian approach using

 
( ) 1

)(),(
−∝θ=θ npnpnp

The 2 parameters are assumed to be independent.  The
implied prior on θ is a uniform distribution on (0,1).  That
is, prior to data collection θ is assumed to be no more
likely to fall into any particular interval of (0,1).  This is
an example of a non-informative prior on θ.  Non-infor-
mative priors are used when there is little prior informa-
tion available about a parameter or parameters of interest.
Additional discussion of non-informative priors can be
found in the Appendix.  The prior distribution on n is also
considered to be non-informative.

In our case, prior information on θ does exist and we
have modified Raftery’s (1988) method to account for this
fact.  The prior information comes from the radio-instru-
mented sample of dead bears.  A common choice for a
prior distribution for a probability is the beta distribution.
This is a continuous distribution defined over the interval
(0,1).  The family of beta distributions is indexed by 2
shape parameters a > 0 and b > 0 .  The mean of the beta
distribution is

and the variance is

( ) ( )12 +++ baba

ab

The 2 shape parameters make this a flexible family of
prior distributions.  It will be assumed below that a and b
are integers as this leads to an expression for the posterior
in terms of factorial quantities.

Given these priors the joint posterior distribution of n
and θ is (for n > x )

where n, θ, and x are as defined above.  The marginal
posterior distribution for n is obtained by integrating θ
out of the joint posterior and is given by

This is a beta-negative binomial distribution.  Similar re-
sults hold if a and b are any positive real numbers.

It is necessary to choose suitable values for a and b.  A
purely Bayesian approach would rely on prior (pre-data)
knowledge of the investigator.  In Raftery’s (1988) origi-
nal formulation of the problem, he assumed that no infor-
mation was available about the probability of a success
and he chose the uniform distribution on the interval (0,1)
as his prior.  This is equivalent to a beta distribution with
a = b = 1.  We have other information available from the
fates of radio-instrumented bears.

Assuming that the reported number of deaths of instru-
mented bears is binomial with parameters m and θ, we
could estimate θ using standard methodology (i.e., confi-
dence intervals).  In keeping with the Bayesian theme,
however, we decided to take a Bayesian approach.  As-
suming a binomial likelihood and a non-informative beta
prior (a = b = 1) for θ, the posterior for θ has a beta distri-
bution with parameters x + 1 and n – x + 1  (Gelman et al.
1995:28–31, also see Appendix I).  We then used this
posterior distribution for the reporting rate of deaths from
radiocollared bears as the prior distribution for the report-
ing rate of deaths in estimating the total number of non-
agency non-collared human-caused deaths of bears.  We
used data from 1983–2000 to estimate the priors for θ.

  Including unexplained and unresolved mortalities
yielded a sample size for this period of n = 50 with x = 16
reported deaths yielding a beta (a = 17, b = 35) prior with
mean

=
52

17
 0.327

and standard deviation 0.0066.  The prior density is ap-
proximately symmetrical about the mean of 0.327.  Ap-
proximately 95% of the probability is distributed between
0.20 and 0.46.  With unresolved and unexplained losses
excluded, the sample size was 27, with 16 reported deaths.
The resulting beta (a = 17, b = 12) prior for the reporting
rate of non-agency, non-collared bear deaths has a mean
of 0.586 and standard deviation 0.0093.  Again the prior
density is approximately symmetrical about the mean, with
the prior probability that θ lies between 0.41 and 0.77
being approximately 95%.  These 95% probability inter-
vals are similar to the large sample 95% confidence inter-

ba

a

+

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )!1!1!1!!1

!1!1!1!1
|

−++−−−−
−+−+−−+−=

banbaxnx

babxnaxn
xnp

( ) ( ) ( )
( ) ( ) ( ) ( )!1!1!!1

!1!1
1)|,( 11

−−−−
−+−θ−θ=θ −+−−+

baxnx

ban
xnp bxnax



ESTIMATION OF BEAR DEATHS  • Cherry et al. 179

vals that could be constructed using standard statistical
methodology.

These 2 choices for a prior distribution for θ provide
reasonable bounds given the data from instrumented bears.
In essence either we have given the unresolved or unex-
plained loss of collared bears as much weight as known
mortalities or given them a weight of 0.  Another reason-
able approach would be to include the unresolved or un-
explained loss bears but to downweight them.  There were
23 unresolved or unexplained losses of signal incidents.
For illustrative purposes we chose a third prior by assum-
ing that there were 16 reported deaths with 23 unreported.
In other words we assumed that 12 of the 23 unresolved
or unexplained incidents were in fact deaths.  This re-
sulted in a beta (a = 17, b = 24) prior distribution for the
reporting rate of non-agency non-collared human-caused
deaths with a mean of 0.410 and standard deviation
0.00779.

For convenience we refer to the 3 prior distributions on
the reporting rate as Prior 1 (a = 17, b = 35), Prior 2 (a =
17, b = 12), and Prior 3 (a = 17, b = 24).  Relevant as-
sumptions are the following:
1.  Deaths occur independently of one another.
2.  The probability that the death of a radio-instrumented

bear is reported by the public is approximately equal
to the probability that the death of a non-instrumented
bear is reported by the public.

3.  The probability that a death is reported is independent
of the cause of death.

4.  The probability that a death is reported is constant from
1983 to 2000.

We applied the method to reported bear mortalities from
1993 to 2000 in 3-year running blocks.  We applied the
method with possible mortalities included and excluded.
We used the 3 prior distributions discussed above.  Thus,
there were 6 possible data and prior distribution combi-
nations.  All calculations were done in the SPLUS pro-
gramming language (MathSoft Inc., Seattle, Washington,
USA).

RESULTS
The data analyzed below are reported human-caused

known, probable, and possible deaths of non-instrumented
bears in the GYE from 1993 to 2000 (Table 2), excluding
agency removals.  Four deaths in 1997 were from one
incident (an adult female and 3 yearlings).  These do not
represent 4 independent deaths and they were pooled into
one death for that year.

The posterior and prior distributions for the reporting
rate θ belong to the same family.  We chose to summarize
the results for n by reporting the cumulative posterior prob-
ability distribution for n (Figs. 2, possibles included and

3, possibles excluded) for the six 3-year periods.  The
posterior distribution for the number of deaths is sensi-
tive both to the specified prior distribution on the report-
ing rate and to the decision of whether to include possible
mortalities as deaths (Tables 3, 4).

The interpretation of Tables 3 and 4 is straightforward.
For example, when possible deaths are included and the
reporting rate is assigned Prior 1 the probability that 36 or
fewer bears died during 1993–1995 is 50% and there is a
95% probability that the number of deaths was between
20 and 69.  If Prior 2 is assigned, the probability that 20 or
fewer bears died is 50% and there is a 95% probability
that between 14 and 34 bears died.  Other summary mea-
sures may be more appropriate for particular applications.
Specified percentiles (e.g. quartiles) of the distribution
could be determined.  If a threshold value of a certain
number of mortalities is specified, then one can determine
the probability of having exceeded that threshold.

DISCUSSION
The Bayesian analysis is sensitive to the choice of the

prior distribution for θ.  Lower reporting rates result in
higher estimates of total mortality and in a more widely
dispersed posterior probability distribution for n.  Berger
et al. (1999) also documented this dependency on the prior.
It is clear that an appropriate prior distribution will need
to be specified for θ and careful thought is needed con-
cerning the form of that prior.  Ideally, scientists using
this method would reach consensus on the form of the
prior.

The priors we chose for θ used information from radio-
instrumented bears.  We assumed that the reporting rate
for non-instrumented bears would be similar to the re-
porting rate for non-collared bears, and this assumption
has been questioned.  For example, if the presence of a
collar serves as an incentive for reporting a mortality, then

Table 2.  Reported non-instrumented grizzly bear deaths in
the Greater Yellowstone Ecosystem by year and running 3-
year totals, 1993–2000.  Excluded are (1) all natural bear
deaths, (2) agency-sanctioned management removals, (3)
mortalities of radio-instrumented grizzly bears, and (4)
known mortalities (i.e., carcass in hand) of bears whose
cause of death was undetermined.

Possibles included Possibles excluded

Year Annual              3-year sum   Annual              3-year sum

1993      1       1
1994      4       3
1995      7                        12       7                        11
1996      4                        15       4                        14
1997      6                        17       5                        16
1998      1                        11       1                        10
1999      7                        14       5                        11
2000    16                        24     13                        19
Total    46     39
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the reporting rate for instrumented bears will be higher
than for non-instrumented bears.  The reporting rate for
instrumented bears could be less than that for non-instru-
mented bears if, for example, managers remove instru-
mented bears once it is known they are dead.  This would
reduce the time these carcasses are available for discov-
ery.  In a sense, the 3 prior distributions we used for the
reporting rate bracket these 2 possibilities and show the
potential effect of such biases.

Another critical assumption is that bear deaths are re-
ported independently of one another.  In general this as-
sumption seems reasonable for the GYE but it can be
violated as it was in 1997 when 4 bears (a female and her
3 yearlings) died in a single incident.  It may not be rea-
sonable for other geographic areas.  Useful results may
still be possible if incidents in which bears die can be con-
sidered independent of one another and if reliable esti-
mates of the number of deaths per incident can be
calculated.

The assumption of a constant reporting rate for
radiocollared bears over time was important in our speci-
fication of the prior and in application of the method to

the count data.  This assumption could be violated if, for
example, the probability of a death being reported de-
pended on the cause of death and these causes changed
over time.  Mattson (1998) argued that this has in fact
occurred.  We did not have sufficient data to statistically
examine the time series of radio-instrumented deaths to
see if there was a trend over time, although we attempted
to do so.  However, there is some evidence that reporting
rates have declined in recent years.

It is also apparent that decisions concerning what con-
stitutes a dead bear are necessary both in using instru-
mented bears to aid in specification of the prior for the
reporting rate and in choosing the sample to which the
method will be applied.  As indicated above, we did not
include known mortalities of bears whose cause of death
was undetermined.  Including those deaths in the analy-
sis, (i.e., assuming that those deaths were human-caused)
would lead to a more conservative approach.  However,
given that very few adult bears are known to have died
from causes other than humans since 1983, an alternative
approach is to estimate total mortality.  This would re-
quire revising current conservation strategies to focus on
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Fig. 2.  Cumulative posterior distributions for the total number of human-caused mortalities (possibles included) of grizzly
bears in the Greater Yellowstone Ecosystem, 1993–2000.  Results are for 3 prior distributions for the reporting rate (solid line
a = 17, b = 12; dash-dot a = 17, b = 24; dashed line a = 17, b = 35).
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Table 3.  Medians and 95% posterior probability intervals (in
parentheses) for the posterior distribution of the total
number of human caused mortalities (possibles included)
for grizzly bears in the Greater Yellowstone Ecosystem,
1993–2000.  Results are shown for 3 beta prior distributions
on the reporting rate.  Beta distribution shape parameters
are indicated in column headings.

total, rather than human-caused, mortality.
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Fig. 3.  Cumulative posterior distribution for the total number of human-caused mortalities (possibles excluded) of grizzly
bears in the Greater Yellowstone Ecosystem, 1993–2000.  Results are for 3 prior distributions for the reporting rate (solid line
a = 17, b = 12; dash-dot a = 17, b = 24; dashed line a = 17, b = 35).

Table 4.  Medians and 95% posterior probability intervals (in
parentheses) for the posterior distribution of the total
number of human caused mortalities (possibles excluded)
for grizzly bears in the Greater Yellowstone Ecosystem,
1993–2000.  Results are shown for 3 beta prior distributions
on the reporting rate.  Beta distribution shape parameters
are indicated in column headings.

Years
Prior 1

a = 17, b = 35
Prior 2

a = 17, b = 12
Prior 3

a = 17, b = 24

1993–95 36  (20, 69) 20  (14, 34) 28  (17, 52)
1994–96 45  (27, 83) 25  (17, 42) 36  (22, 64)
1995–97 52  (31, 93) 29  (20, 47) 41  (25, 71)
1996–98 33 (18, 64) 18  (12, 32) 26  (15, 48)
1997–99 42 (25, 78) 23  (16, 39) 33  (20, 60)

1999–2000 73 (46, 127) 40  (29, 64) 57  (37, 97)

Years

Prior 1
a = 17, b = 35

Prior 2
a = 17, b = 12

Prior 3
a = 17, b = 24

33  (18, 64) 18  (12, 32) 26 (15, 48)
42  (25, 78) 23  (16, 39) 33  (20, 60)
48  (29, 88) 27  (19, 44) 38  (24, 67)
30  (16,59) 17  (11, 29) 24  (14, 45)

33  (18, 64) 18  (12, 32) 26  (15, 48)

1993–95
1994–96
1995–97
1996–98
1997–99
1999–2000

58  (35, 103) 32  (22, 52) 45  (29, 79)
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APPENDIX I

A Brief Primer of Bayesian Statistics
A typical statistics methods course treats data as real-

izations of a random experiment (e.g., random sampling
from a population).  The purpose of data collection is to
use the information in the data to draw some inference
about unknown parameters (numerical characteristics of
the population).  The 2 most common forms of inference

are estimation (point and interval) and testing.  Interpre-
tation of the results of such inference procedures requires
2 key assumptions.  The first is that the probability of
some event of interest is the proportion of times that event
occurs if the basic chance process (random sampling) is
repeated over and over independently and under the same
conditions.  The second is considering the parameter to
be an unknown constant.  Given the long run relative fre-
quency interpretation of probability and the assumption
of a constant but unknown parameter, it makes no sense
to talk about the probability that the parameter will have
some specified value or fall into some interval of values.
It is a fixed constant that does not vary with repeated sam-
pling, and it either has the value or falls in the interval or
it does not.  There is no probability statement to be made
about the parameter.  Probability models apply to data,
not to parameters.  These methods are thus considered a
part of frequentist statistical methodology.

Bayesian statisticians reject this line of reasoning.
Bayesians consider probability to be the natural language
of uncertainty.  They talk about the probability that a pa-
rameter will fall into some interval of values even if the
parameter truly is fixed (e.g., the average weight of adult
male grizzly bears in Montana on any given day).  Prob-
ability to a Bayesian is a subjective assessment of the
strength of a personal belief about an unknown param-
eter.  Inference begins with quantifying the degree of prior
(pre-data) uncertainty about the parameter by choosing
an appropriate probability distribution for the parameter
called the prior distribution (the prior).  The prior is a
quantitative description of what an investigator believes
based on previous experience and knowledge.  Data are
collected and information in the data is used to update or
modify the prior beliefs resulting in a posterior distribu-
tion (the posterior).

An example will help to illustrate these approaches.  A
common problem in introductory statistics courses in-
volves estimation of a population proportion.  The data
collection procedure is conceptualized as drawing n inde-
pendent observations ( )nXXX ,,, 21 �  from a Ber-
noulli distribution and counting the number of successes.
Each of the random variables iX  equals 0 or 1 depending
on whether the observation was a failure or a success,
respectively.  The number of successes

 ∑
=

=
n

i
iXY

1

is a binomial random variable with parameters n (which
is known) and θ (which is unknown).  The probability of
a success on any one observation (θ) is the unknown pa-
rameter of interest.  Although unknown, θ is considered
to be a constant.  The probability distribution of Y is given
by
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( ) yny

y

n
yp −θ−θ





=θ 1)|(

for y = 0,1,2,...,n.  The unknown parameter  is estimated
by computing the sample proportion θ̂   = Y/n.  The con-
struction of confidence intervals and hypothesis tests fol-
lows in the usual way.  For example, a large sample 95%
confidence interval can be calculated from

( )
n

θ−θ±θ
ˆ1ˆ

96.1ˆ

A Bayesian analysis starts with a mathematical descrip-
tion of an investigator’s a priori belief about θ.  These
beliefs are expressed in terms of the prior denoted here by
p(θ).  Suppose that we have n observations
( )nXXX ,,, 21 �  from a Bernoulli distribution.  The
probability distribution of Y is a function of the data given
θ.  Viewed as a function of θ  given the data, such a func-
tion is referred to as the likelihood, which we denote as
l(θy).  Although they look like identical functions, p and
l are quite different because in the first case the parameter
is fixed and the data vary, and in the second case the data
are fixed and the parameter varies.  That is

( ) yny

y

n
yp −θ−θ





=θ 1)|( ; for ny ,,2,1,0 �=

and

The likelihood is used to update prior beliefs about θ
quantified in p(θ) using Bayes Theorem to compute a pos-
terior distribution )|( yp θ  for the parameter.  Bayes
Theorem tells us that

)(

)()|(
)|(

ym

pyl
yp

θθ=θ

The quantity in the denominator m(y) is referred to as
the marginal distribution of the data, but often it is not
necessary to compute this in practice.  It contains no in-
formation about θ and is in fact a constant because the
computation of the posterior is a post-data operation.  It is
enough to think of Bayes Theorem as

posterior ∝ (likelihood) x (prior)

The posterior distribution is the goal of a Bayesian analy-
sis.  It summarizes an investigator’s knowledge of the
parameter given prior belief and subsequent data.

A common choice for a prior for θ is a beta distribu-
tion.  The beta family of distributions is a flexible 2-pa-
rameter (a and b) family of continuous distributions
defined over the interval from 0 to 1.  The parameters a
and b are positive real numbers.  This makes it an ideal

source of potential priors for a probability such as θ.  It is
enough for our purposes to note that with a beta prior,

Thus, the posterior is (ignoring constant terms that are
independent of θ)

( )yp |θ  ∝ ( ) ( ) ( ) 1111
111 −−+−+−−− θ−θ=θ−θθ−θ ynbyaynyba

The posterior is also a beta distribution with parameters a
+ y and b + n – y.

For a specific example, suppose that we choose a beta
prior for θ with parameters a = 3 and b = 7.   The mean of
a beta random variable with parameters a and b is a/(a+b),
and the variance is (ab)/[(a + b)2 (a + b + 1)].  The mean
for the prior given here is 0.3 and the standard deviation
is 0.197.  By specifying this prior we are stating our belief
that the true probability of a success is around 0.3, but
there is some uncertainty associated with that belief.  We
take a sample of size 5 and observe 4 successes.  The
posterior distribution is a beta distribution with param-
eters a + y = 3 + 4 = 7 and b + n –  y = 7 + 5 – 4 = 8.  The
posterior mean is 0.467 and the posterior standard devia-
tion is 0.132.  Observing 4 successes in 5 trials has shifted
the prior distribution to the right, giving more credence to
higher values of  θ.  Note that the frequentist estimate of
θ would be θ = 0.8.

A 100(1 – α)% posterior probability interval or cred-
ible interval can be constructed by choosing the lower
endpoint to be the 2.5th and the upper endpoint to be the
97.5th percentile of the posterior distribution.  The Baye-
sian interpretation is that the fixed interval has a 100 (1−
α)% probability of containing the random parameter.  In
the example above, a 95% credible interval for θ would
be the 2.5th and 97.5th percentiles of a beta distribution
with parameters 7 and 8, which would give an interval of
0.24 to 0.72.  Bayesian methods can be applied when
multiple parameters are of interest (e.g. multiple regres-
sion), in which case a joint prior is specified for the set of
parameters and a joint posterior is the outcome.

Specification of a (joint) prior distribution for the
parameter(s) of interest is a key part of any Bayesian analy-
sis.  One common approach is to specify prior distribu-
tions under an assumption of ignorance, so-called
non-informative priors.  Practically, a non-informative
prior distribution arises in a setting where prior informa-
tion about a parameter is lacking.  Some have argued that
non-informative priors should always be used as this in-
troduces objectivity into what otherwise appears to be a
subjective enterprise.  When working with multiple pa-
rameters, several non-informative priors are available, and
care is needed to ensure the posterior distribution is a valid
probability distribution.  Carlin and Louis (1996:33–37)
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and Gelman et al. (1995:52–57) discuss non-informative
priors.  In some applications, the strength of the data is
such that it overwhelms the prior, and the posterior has
little dependence on the prior.  When the posterior does
depend on the prior, the Bayesian would argue that an
honest analysis must include discussion of prior choice

and recognition that the data do not support a single an-
swer.
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